North Penn School District

Elementary Math Parent Letter

Grade 4

Unit 5 - Chapter 10: Two-Dimensional Figures

Examples for each lesson:

Lesson 10.1

Lines, Rays, and Angles

Name	What it looks like	Think
point D	D.	A point names a location in space.
$\begin{aligned} & \text { line } A B ; \overleftrightarrow{A B} \\ & \text { line } B A ; \overparen{B A} \end{aligned}$	$\stackrel{+}{4} \xrightarrow{\bullet}$	A line extends without end in opposite directions.
line segment $A B ; \overline{A B}$ line segment $B A ; \overline{B A}$	$\stackrel{\square}{A}$	"Segment" means part. A line segment is part of a line. It is named by its two endpoints.
ray $M N ; \overrightarrow{M N}$ ray $N M ; \overrightarrow{N M}$	$\begin{array}{ll} \stackrel{N}{M} & \dot{N} \\ \stackrel{M}{ } \quad \stackrel{N}{2} \end{array}$	A ray has one endpoint and extends without end in one direction. A ray is named using two points. The endpoint is always named first.
angle $X Y Z ; \angle X Y Z$ angle $Z Y X ; \angle Z Y X$ angle $Y ; \angle Y$		Two rays or line segments that share an endpoint form an angle. The shared point is the vertex of the angle.
A right angle forms a square corner.	An acute angle opens less than a right angle.	An obtuse angle A straight angle opens more than a fight angle and less a line. than a straight angle.

More information on this strategy is available on Animated Math Models \#38, 39.

Lesson 10.2

Classify Triangles

A triangle is a polygon with 3 sides
and 3 angles.
Each pair of sides joins at a vertex.
You can name a triangle by its vertices.

$\triangle P Q R$	$\triangle Q R P$	$\triangle R P Q$
$\triangle P R Q$	$\triangle Q P R$	$\triangle R Q P$

There are 3 types of triangles. All triangles have at least $\underline{2}$ acute angles.

Obtuse triangle one obtuse angle	Right triangle one right angle

Lesson 10.3

Parallel Lines and Perpendicular Lines

Parallel lines are lines in a plane that are always the same distance apart. Parallel lines or line segments never meet.

In the figure, lines $A B$ and $C D$, even if extended, will never meet.
The lines are parallel. Write $\stackrel{\rightharpoonup}{A B} \mid \overrightarrow{C D}$.
Lines $\underline{A D}$ and $B C$ are also parallel. So, $\stackrel{\rightharpoonup}{A D} \| \overleftrightarrow{B C}$.

Intersecting lines cross at exactly one point. Intersecting lines that form right angles are perpendicular.

In the figure, lines $A D$ and $A B$ are perpendicular because they form right angles at vertex A. Write $\stackrel{\rightharpoonup}{A D} \perp \overleftrightarrow{A B}$.
Lines $B C$ and $\underline{C D}$ are also perpendicular. So, $\overrightarrow{B C} \perp \overrightarrow{C D}$.

More information on this strategy is available on Animated Math Model \#40.

Lesson 10.4

Classify Quadrilaterals

More information on this strategy is available on Animated Math Model \# 41.

Lesson 10.5

Line Symmetry

Tell whether the parts on each side of the line match. Is the line a line of symmetry?

Step 1 Trace and cut out the shape.

Fold the shape along the dashed line.

Step 2 Tell whether the	Step 3 Decide if the line is parts on each side match. a line of symmetry.
Compare the parts on	The parts on each side of the line do not match. each side.
So, the line is not a line of symmetry.	
The parts do not match.	

Lesson 10.6

Find and Draw Lines of Symmetry

Tell whether the shape appears to have zero lines, 1 line, or
more than 1 line of symmetry. Write zero, 1, or more than 1.

Step 1 Decide if the shape
has a line of symmetry.
Trace and cut out the
shape. Fold the shape
along a vertical line.
:---
shape has another line of
symmetry.
Open the shape and fold it
along a horizontal line.
:---
lines of symmetry.
Think: Can I fold the
shape in other ways so
that the two parts match
exactly?
exactly?

So, the shape appears to have pes match

More information on this strategy is available on Animated Math Model \# 42.

Lesson 10.7

Problem Solving • Shape Patterns

Use the strategy act it out to solve pattern problems.
What might be the next three figures in the pattern below?

Read the Problem		
What do I need to find? I need to find the next three figures in the pattern.	What information do I need to use? I need to look for \qquad a group of figures that repeat.	How will I use the information? I will use pattern blocks to model the pattern and act out the problem.
Solve the Problem		
Look for a group of figures that repeat and circle that group. The repeating group is triangle, triangle, square, triangle, square I used triangles and squares to model and continue the pattern by repeating the figures in the group. These are the next three figures in the pattern: - \triangle		

More information on this strategy is available on Animated Math Model \# 43.

Vocabulary

Acute angle - an angle that has a measure less than a right angle
Line - a straight path of points that continues without end in both directions
Line of symmetry - an imaginary line that divides a shape into two congruent parts
Line symmetry - what a shape has if it can be folded about a line so that its two parts match exactly

Obtuse angle - an angle that has a measure greater than a right angle
Ray - a part of a line, with one endpoint, that is straight and continues in one direction
Right angle - an angle that forms a square corner and has a measure of 90°
Straight angle - an angle in which two rays point in opposite directions so that they form a line

